Option A — Sight and wave phenomena

A1. (a) the near point is the closest position of an object from the eye that can be clearly focussed / objects placed closer than the near point cannot be focussed by the eye / OWTTE; the far point is the furthest position of an object from the eye that can be clearly focussed / OWTTE; accommodation is the ability of the eye to focus on objects placed anywhere between the near point and the far point / OWTTE; Award [1 max] if near and far points are defined in terms of distance.

-6-

(b) the (ciliary) muscles (of the eye) alter the shape of the eye lens; thereby altering its focal length;

A2. (a) (i)

general correct shape touching axis and symmetric about $\theta = 0$ (at least one secondary maxima on each side); *(judge by eye)* central maximum wider than secondary maxima; secondary maxima at most one third intensity of central maximum;

(ii)
$$\frac{d}{2} = \frac{D\lambda}{b};$$

 $d = \frac{2.0 \times 1.2 \times 5.2 \times 10^{-7}}{4.0 \times 10^{-5}} = 3.12 \times 10^{-2} \text{ m}$
 $\approx 3 \text{ cm}$

(b) Award [2 max] for a sensible argument.

e.g. light from each point forms a diffraction pattern after being focussed by the eyepiece of the telescope;

if the diffraction patterns are not sufficiently well separated then the points will not be resolved as separate sources;

Award [1 max] for the conclusion.

e.g. if the points cannot be resolved as separate sources the planet cannot be seen as a disc;

[3]

[2]

[3]

[3]

[2]

[1]

- A3. (a) no energy propagated in a standing wave; the amplitude of a standing wave is not constant; points along a standing wave are either in phase or out of phase with each other / OWTTE;
 - (b) (i) antinode at open end node at closed end;
 - (ii) antinode at open end and node at closed end and one more node along pipe; [1] (judge by eye)

(c) for
$$\lambda_1 = 4L$$
 and for $\lambda_2 = \frac{4L}{3}$;
 $f_1 = \frac{c}{4L}$ and $f_2 = \frac{3c}{4L}$;
 $\frac{f_1}{f_2} = \frac{1}{3}$;
[3]

(d) there must always be a node at the closed end and an antinode at the open end / there must always be an integer number of $\frac{\lambda}{4}$; [1]

Option A — Sight and wave phenomena

A1.	(a)	ability to focus light / see clearly images; of objects that are at different distances from the eye; (ciliary) muscles; change shape of lens / change focal length of lens; thicker lens / more curvature, focus for objects nearer the eye;	
	(b)		
	(c)	extra red colour/longer wavelengths gives impression of warmth; additional blue colour/shorter wavelengths gives impression of cold;	[2]
A2.	(a)	(i) <i>either</i>	
		observer sees image of blood cell; moving at twice speed of blood cell;	
		or	
		Doppler shift "observed" by blood cell; superposed on shift when cell acts as moving source; Award [1] if mentioned that Doppler effect occurs twice.	[2]
		(ii) need component of velocity of cell along direction of ultrasound beam;	[1]
	(b)	$740 = \frac{2 \times 4.5 \times 10^6 \times v \times \cos 40}{1.5 \times 10^3};$ $v = 0.16 \text{ ms}^{-1};$ Award [1] if the speed of light is used.	[2]
A3.	(a)	light with (electric field vector) vibrating in one direction only; in plane normal to direction of energy transfer;	[2]
	(b)	<pre>model made of perspex/polythene etc.; light passed through crossed polaroids; with model between the polaroids; when stressed, either colours seen if white light used</pre>	[6]

Option A — **Sight and wave phenomena**

A1.	(a)	 (i) used in bright light/day-time; there are three types of cone cells sensitive to different colours; few are connected to the same nerve implying greater detail of the image formed; used for photopic vision; 	[1 max]
		 (ii) used in dim light/night-time; insensitive to colour; different rod cells are connected to the same nerve implying loss of detail in the image formed; used for scotopic vision; 	[1 max]
	(b)	<i>cone cells</i> : their distribution increases as the principal axis is approached (reaching a maximum at the fovea) / maximum in centre, fewer away from principal axis;	
		<i>rod cells</i> : few, near the principal axis, most on the edges of the retina / minimum in centre, more away from principal axis;	[2]
	(c)	since the light is dim rod cells will be used; and these are mostly on the edge of the retina/they are far from the principal axis;	[2]
A2.	(a)	(comparison with the SHM displacement formula shows that) the amplitude is A and this depends on x ;	[1]
	(b)	frequency is $\frac{500\pi}{2\pi}$; f=250Hz;	[2]

(c) at x=2.0 m, the amplitude is always equal to $A=12\sin \pi = 0$ as required for a node; [1]

– 5 –

as shown above; Accept if second pattern is drawn to the left of the other.

(b) wavelength is
$$\left(\frac{3.0 \times 10^8}{43 \times 10^9}\right) = 7.0 \times 10^{-3} \,\mathrm{m};$$

telescope can resolve an angular separation of

$$\theta = \left(1.22\frac{\lambda}{b} = 1.22\frac{7.0 \times 10^{-3}}{36 \times 10^{3}} = \right) 2.4 \times 10^{-7};$$

and so $L = D\theta = 2.4 \times 10^{-7} \times 4.7 \times 10^{23} = 1.1 \times 10^{17} \,\mathrm{m};$ [3]

- (a) horizontal line; *(labelled U)* through half the incident intensity;
- (b) curve starting at I_0 ; (*labelled P*) with minima and maxima as shown;

[2]

[2]

[3]

[3]

Option A — Sight and wave phenomena

A1.	(a)	rods	. ,	[1]
	(b)	(i)	similar shaped curve with different position of maximum; lower maximum;	[2]
		(ii)	blue, red or green as appropriate to the sketch;	[1]
			relative light absorption	
			100 80- 60- 40- 20- 0	
			400 500 600 700	
			wavelength / hm	
	(c)	three	e types of cones/cells involved in part (b)/photopic vision;	

- (c) <u>three</u> types of cones/cells involved in part (b)/photopic visio each has different frequency response; normally a shortage/defect of one type / OWTTE;
- A2. (a) shape of diffraction pattern acceptable; central maximum of one pattern falls on first minimum of other; relative heights of central and first maxima realistic for both patterns;

(b)
$$\theta = \frac{1.22\lambda}{d} = \frac{1.22 \times 400 \times 10^{-9}}{0.003} (= 1.63 \times 10^{-4} \text{ rad});$$

woman \rightarrow car distance $= \left(\frac{\text{head lamp separation}}{\tan \theta}\right) = \frac{1.2}{1.63 \times 10^{-4}};$
 $= 7.4 \text{ km};$

-2-

A3. (a) light where the direction of the (electric) field is always/predominantly in the same plane; [1]

