B2. Part 1 Nuclear fission and fusion

(a)	(i)	the energy released when nuclides form from constituents / energy required to separate nucleus into separate nucleons / <i>OWTTE</i> ;	[1]
	(ii)	S marked at maximum of curve (on curve/axis); (judge by eye)	[1]
	(iii)	highest binding energy per nucleon;	[1]
(b)	(i)	uranium binding energy per nucleon = 7.6 (MeV) (±0.1); total uranium binding energy = $7.6 \times 235 = 1786$ (MeV); total Kr+Ba binding energy = $141 \times 8.4 + 92 \times 8.7 = 1985$ (MeV); energy released = $1985 - 1786 = 198.8$ (MeV);	
		$\simeq 200 \mathrm{MeV}$	[4]
	(ii)	2;	[1]
	(iii)	one reaction: $\Delta E = 3.1 \times 10^{-28} \times [3 \times 10^8]^2 (= 2.8 \times 10^{-11} \text{ J});$	
		number required = $\frac{1000}{2.8 \times 10^{-11}} = 3.6 \times 10^{13}$;	[2]
	(iv)	two neutrons produced may cause two further fissions; producing four neutrons which may produce four further fissions; Accept answer in diagram form but it must feature four generated neutrons with only two neutrons giving further fission.	[2]
(c)	nuclear fusion waste much less active than fission waste; fusion fuel much more abundant than fission fuel;		

fusion fuel has higher energy density than fission;
radiation/pollution from plant lower for fusion;[3 max]

[1]

Part 2 Atomic and nuclear spectra

(i) as shown; (allow transition from -1.56 to -3.73) [1]

(ii) as shown;

Award **[1 max]** if (i) and (ii) are labelled the wrong way round or if arrows in wrong direction.

(b)
$$E = \frac{hc}{\lambda};$$

 $\lambda = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{10.4 \times 1.6 \times 10^{-19}};$
 $= 1.20 \times 10^{-7} \text{ m};$
ECF from (a): if 1.56 eV used, $\lambda = 7.93 \times 10^{-7} \text{ m}.$
[3]

- 11 -

[2]

[2]

[2]

B4. Part 1 Decay of radium-226

- (a) (i) proton number: 86; neutron number: 136; need both to award the mark. [1]
 - (ii) the equation shows a spontaneous change from an unstable state to a more stable state / OWTTE;
 the less the binding energy per nucleon the more unstable a nucleus so binding energy per nucleon of Ra less than the binding energy per nucleon of Rn / so binding energy per nucleon of Rn greater than binding energy per nucleon of Ra;
 Accept answers in terms of negative binding energy per nucleon e.g. the less negative the binding energy per nucleon etc.
 Award [1] for "number of protons less so (electrostatic) repulsion less and so nucleus more stable".
- (b) 226.0254 = 222.0175 + 4.0026 + Q; $Q = 0.0053 \times 931.5 \text{ MeV}$; = 4.94 MeV

(c) (i) mass of
$$\alpha = (4.0026 \times 1.661 \times 10^{-27}) = 6.65 \times 10^{-27}$$
 (kg);
 $v = \sqrt{\frac{2E_{\rm K}}{m}}$;
 $= \sqrt{\frac{2 \times 4.94 \times 10^6 \times 1.6 \times 10^{-19}}{6.65 \times 10^{-27}}}$;
 $= 1.54 \times 10^7$ m s⁻¹ [3]

(ii)
$$F = \frac{\Delta E_{\rm K}}{d}$$
; [1]

(iii)
$$\Delta E_{\rm K} = 7.89 \times 10^{-13} \, ({\rm J});$$

 $F = 1.88 \times 10^{-11} \, {\rm N};$

(iv)
$$a = \frac{F}{m} \text{ or } a = \frac{v^2}{2s};$$

 $a = 2.82 \times 10^{15} (\text{m s}^{-2});$
 $t = \frac{v}{a};$
 $= 5.46 \times 10^{-9} \text{ s / } \approx 5 \text{ ns};$
[4]

– 17 –

B4. Part 1 α -particle scattering and nuclear processes

(a) $\frac{^{222}_{86}}{^{4}_{2}}\alpha$; [2]

- 14 -

(b) (i) 5.0×10^{10} s; Accept 4.9×10^{10} s if 0.69 used.

(ii)
$$N = \left(\frac{6.02 \times 10^{23}}{226}\right)$$

= 2.66×10²¹;
 $A = \left(\frac{2.66 \times 10^{21} \times \ln 2}{5.0 \times 10^{10}}\right)$ or use of $A = \lambda N$
= 3.7×10¹⁰ Bq;
power = 3.7×10¹⁰ × 7.6×10⁻¹³;
= 28×10⁻³ W;

(i) path of
$$\alpha$$
-particle \longrightarrow D

gold nucleus

angle shown correctly; Horizontal line must be present, angle can be marked to straight portion of deviated path.

(ii) same number of protons / additional number of neutrons / nuclei are isotopes;
 no charge change so deviation unchanged;
 Award [0] for bald answer or answer with incorrect explanation.

(d) $4.0 \times 10^{6} \times 1.6 \times 10^{-19}$; $\frac{79e \times 2e}{4\pi\varepsilon_{0}r}$; 5.7×10^{-14} m; Award [3] for bald correct answer.

(c)

[3]

[1]

[2]

[1]

[4]

[1]

[3]

[1]

B2. Part 1 Nuclear fusion

- (a) the minimum energy required to (completely) separate the <u>nucleons</u> in a nucleus / the energy released when a nucleus is assembled from its constituent nucleons;
- (b) mass defect = $1 \times 1.007276 + 2 \times 1.008665 3.016049 = 8.56 \times 10^{-3} \text{ u}$; binding energy = $8.56 \times 10^{-3} \times 931.5 = 7.97 \text{ MeV}$; binding energy per nucleon = $\frac{7.97}{3}$ MeV; = 2.66 MeV
- (c) calculation of binding energies as shown below; deuterium ${}_{1}^{2}H$ 1.11×2=2.22MeV tritium ${}_{1}^{3}H$ 2.66×3=7.97MeV helium ${}_{2}^{4}He$ 7.20×4=28.8MeV energy released is the difference of binding energies; and so equals 18.6MeV; [3] Award [2 max] for an answer that uses binding energy per nucleon without multiplying by the number of nucleons.
- (d) (i) the electrostatic/Coulomb force;
 - (ii) total energy initially available is $2E_{\rm K}$;

at closest point potential energy is $E_{\rm p} = \frac{kq_{\rm D}q_{\rm T}}{d}$; reference to energy conservation to equate the two; [3]

(iii) correct identification of charges involved $q_{\rm D} = q_{\rm T} = 1.6 \times 10^{-19} \,\rm C$;

substitution to get
$$E_{\rm K} = \frac{9 \times 10^9 \times (1.6 \times 10^{-19})^2}{2 \times 1.2 \times 10^{-14}};$$

 $E_{\rm K} = 9.6 \times 10^{-15} \,\text{J}$
[2]

(e) (i)
$$4.6 \times 10^8 \,\mathrm{K}$$
; [1]

- (ii) even at lower temperatures there are nuclei moving sufficiently fast for fusion to occur; because the formula for energy only refers to the average energy;
- (iii) the nuclei have to overcome a Coulomb barrier/the repulsive force between the nuclei;and so high temperatures are required to make the nuclei come sufficiently close to each other (for the nuclear force to then make them fuse);
- (iv) at short distances the dominant force is the strong nuclear force which is attractive;
 at large separations the nuclear force is negligible because it has short range leaving the repulsive electric force as the dominant force;

[2]

[2]

[2]

[4]

-7-

- A3. (a) (i) an atom or nucleus that is characterized by the constituents of its nucleus / a particular type of atom or nucleus / *OWTTE*; (in particular) by its proton (atomic) number and its nucleon number / number of protons and number of neutrons; [2]
 - (ii) nuclides that have the same proton number but different nucleon number / same number of protons different number of neutrons; [1]

(b) (i)
$${}^{24}_{11}\text{Na} \rightarrow {}^{24}_{12}\text{Mg} + \beta^- + \overline{v}$$

 $\beta^- / e^- / {}^0_{-1}e;$
 $\overline{v};$ [2]

(ii) 5.00216 MeV is equivalent to 0.00537 u; 23.99096 = 23.98504 + 0.00537 + rest mass of particle; rest mass = 0.00055u; [3] *No credit given for bald correct answer.* (c) sodium-24 has more nucleons; and more nucleons (usually) means greater (magnitude of) binding energy;

or

sodium-23 has less nucleons; and less nucleons (usually) means less (magnitude of) binding energy; [2]

- 8 -

- A4. (a) product of normal component of magnetic field strength and area that it links / OWTTE; $\phi = BA\cos\theta;$ [2]
 - (b) rate of change of flux = $(1.8 \times 10^{-3} \times 5.0 \times 10^{-2}) = 9.0 \times 10^{-5} (Wb s^{-1});$ recognize that e.m.f. = rate of change of flux = 9.0×10^{-5} V; [2] *Ignore any sign.*

[2]

SECTION A

Do not accept 1°C. (ii) actual uncertainty = $\pm 70\Omega$; percentage uncertainty = $\left(\frac{70}{2600}\right) \times 100 = 3\%$; (do not allow 2.7%) [2]. Do not apply SD-1 here since the question asks specifically for an estimate. (b) (i) at 20°C: 1800 Ω ; [1]. at 5°C: within range 3080 $\Omega \rightarrow 3220\Omega$; within 3120 $\Omega \rightarrow 3180\Omega$; [2]. (ii) use of tangent at correct position clear; answer 64 Ω K ⁻¹ or 64 Ω °C ⁻¹ ; (allow $\pm 2\Omega$ K ⁻¹ or $\pm 2\Omega$ °C ⁻¹) negative sign; [3]. (c) gradient of graph decreases as temperature rises / increases as $\left\{ \begin{array}{l} accept "gradient not constant". \\ not constant". \\ so relationship cannot be linear; [2]. or straight-line joining extreme points; does not pass through "error boxes" of all points; product calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; Award [2 max] if "C used instead of K. A2. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); (c) the or \ln 2 (correct) for third point of the isotope;(determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope);(c) the or \ln 2 (correct) for third point of the isotope (from the measured mass of the isotope);(c) the or \ln 2 (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)$	A1.	(a)	(i)	±0.5 °C ;	[1]
 (ii) actual uncertainty = ±70Ω; percentage uncertainty = (⁷⁰/₂₆₀₀)×100 = 3%; (do not allow 2.7%) [2, Do not apply SD-1 here since the question asks specifically for an estimate. (b) (i) at 20°C: 1800Ω; [1] at 5°C: within range 3080Ω→3220Ω; within 3120Ω→3180Ω; [2] (ii) use of tangent at correct position clear; answer 64ΩK⁻¹ or 64Ω°C⁻¹; (allow ±2ΩK⁻¹ or ±2Ω°C⁻¹) negative sign; [3] (c) gradient of graph decreases as temperature rises / increases as {accept "gradient temperature drops; so relationship cannot be linear; [2] or straight-line joining extreme points; does not pass through "error boxes" of all points; (d) product RT calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; Award [2 max] if °C used instead of K. A2. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); within 2.2 				Do not accept $1^{\circ}C$.	
percentage uncertainty = $\left(\frac{70}{2600}\right) \times 100 = 3\%$; (do not allow 2.7%) [2, Do not apply SD-1 here since the question asks specifically for an estimate. (b) (i) at 20°C: 1800Ω; [1], at 5°C: within range $3080\Omega \rightarrow 3220\Omega$; within $3120\Omega \rightarrow 3180\Omega$; [2], (ii) use of tangent at correct position clear; answer $64\Omega K^{-1}$ or $64\Omega^{\circ}C^{-1}$; (allow $\pm 2\Omega K^{-1}$ or $\pm 2\Omega^{\circ}C^{-1}$) negative sign; [3], (c) gradient of graph decreases as temperature rises / increases as $\left\{ \begin{array}{l} accept "gradient \\ not constant". \\ so relationship cannot be linear; \\ or \\ straight-line joining extreme points; \\ does not pass through "error boxes" of all points; \\ product RT calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; Award [2 max] if °C used instead of K. A2. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); t = t_{1} = t_{1}^{0}2$			(ii)	actual uncertainty = $\pm 70\Omega$;	
Do not apply SD-1 here since the question asks specifically for an estimate. (b) (i) $at 20^{\circ}$ C: 1800Ω; [1] $at 5^{\circ}$ C: within range 3080Ω → 3220Ω; [2] (ii) use of tangent at correct position clear; [2] (ii) use of tangent at correct position clear; [3] (c) gradient of graph decreases as temperature rises / increases as $\begin{cases} accept "gradient more temperature drops; so relationship cannot be linear; 0r [2] or straight-line joining extreme points; does not pass through "error boxes" of all points; [2] (d) product RT calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; Award [2 max] if "C used instead of K. [3] A2. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); u = 10.2 [1] $				percentage uncertainty = $\left(\frac{70}{2600}\right) \times 100 = 3\%$; (do not allow 2.7%)	[2]
(b) (i) $at 20^{\circ}C$: 1800 Ω ; [I], $at 5^{\circ}C$: within range 3080 $\Omega \rightarrow 3220\Omega$; within 3120 $\Omega \rightarrow 3180\Omega$; [2], (ii) use of tangent at correct position clear; answer $64\Omega K^{-1}$ or $64\Omega^{\circ}C^{-1}$; (allow $\pm 2\Omega K^{-1}$ or $\pm 2\Omega^{\circ}C^{-1}$) negative sign; [3], (c) gradient of graph decreases as temperature rises / increases as $\begin{cases} accept "gradient not constant". \\ not constant". \\ so relationship cannot be linear; [2], or straight-line joining extreme points; does not pass through "error boxes" of all points; (d) product RT calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; [3], A2. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); isotope); isotope);$				Do not apply SD-1 here since the question asks specifically for an estimate.	
at 5°C: within range 3080Ω → 3220Ω; within 3120Ω → 3180Ω; [2, (ii) use of tangent at correct position clear; answer $64\Omega K^{-1}$ or $64\Omega^{\circ}C^{-1}$; (allow $\pm 2\Omega K^{-1}$ or $\pm 2\Omega^{\circ}C^{-1}$) negative sign; [3, (c) gradient of graph decreases as temperature rises / increases as $\begin{cases} accept "gradient not constant". \\ not constant". \end{cases}$ so relationship cannot be linear; [2, or straight-line joining extreme points; does not pass through "error boxes" of all points; (d) product <i>RT</i> calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; <i>Award</i> [2 max] if °C used instead of K. A2. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); where the source isotope); where the source isotope isotope isotope (from the measured mass of the isotope); where the source isotope isotope isotope isotope (from the measured mass of the isotope); where the source isotope i		(b)	(i)	at $20^{\circ}C$: 1800 Ω ;	[1]
 within 3120Ω → 3180Ω; [2] (ii) use of tangent at correct position clear; answer 64ΩK⁻¹ or 64Ω°C⁻¹; (allow ±2ΩK⁻¹ or ±2Ω°C⁻¹) negative sign; [3] (c) gradient of graph decreases as temperature rises / increases as { accept "gradient temperature drops; so relationship cannot be linear; [2], or straight-line joining extreme points; does not pass through "error boxes" of all points; (d) product <i>RT</i> calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; <i>Award</i> [2 max] if °C used instead of K. A2. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); to the target ln 2 				at 5°C: within range $3080\Omega \rightarrow 3220\Omega$;	
 (ii) use of tangent at correct position clear; answer 64ΩK⁻¹ or 64Ω°C⁻¹; (allow ±2ΩK⁻¹ or ±2Ω°C⁻¹) negative sign; (c) gradient of graph decreases as temperature rises / increases as {accept "gradient temperature drops; [2], or straight-line joining extreme points; does not pass through "error boxes" of all points; (d) product <i>RT</i> calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; <i>Award</i> [2 max] if °C used instead of K. A2. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); 				within $3120\Omega \rightarrow 3180\Omega$;	[2]
 answer 64ΩK⁻¹ or 64Ω°C⁻¹; (allow ±2ΩK⁻¹ or ±2Ω°C⁻¹) negative sign; (c) gradient of graph decreases as temperature rises / increases as {accept "gradient temperature drops; so relationship cannot be linear; [2], or straight-line joining extreme points; does not pass through "error boxes" of all points; (d) product <i>RT</i> calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; [3]. A2. (a) measure activity <i>A</i> of a sample containing the isotope; determine (chemically) the number <i>N</i> of atoms of the isotope (from the measured mass of the isotope); 			(ii)	use of tangent at correct position clear;	
 (c) gradient of graph decreases as temperature rises / increases as { accept "gradient not constant". (c) gradient of graph decreases as temperature rises / increases as { accept "gradient not constant". (c) gradient of graph decreases as temperature rises / increases as { accept "gradient not constant". (c) gradient of graph decreases as temperature rises / increases as { accept "gradient not constant". (c) gradient of graph decreases as temperature rises / increases as { accept "gradient not constant". (c) gradient of graph decreases as temperature rises / increases as { accept "gradient not constant". (c) gradient of graph decreases as temperature rises / increases as { accept "gradient not constant". (d) product RT calculated correctly for two points; product calculated correctly for two points; conclusion: not same value so suggestion not correct; Award [2 max] if °C used instead of K. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); (c) the translation of the isotope (from the measured mass of the isotope); 				answer $64\Omega K^{-1}$ or $64\Omega^{\circ}C^{-1}$; (allow $\pm 2\Omega K^{-1}$ or $\pm 2\Omega^{\circ}C^{-1}$)	[2]
 (c) gradient of graph decreases as temperature rises / increases as { accept "gradient not constant". so relationship cannot be linear; [2, or straight-line joining extreme points; does not pass through "error boxes" of all points; (d) product <i>RT</i> calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; <i>Award</i> [2 max] if °C used instead of K. A2. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); a taxe stare ln 2 				<u>negative</u> sign,	[3]
temperature drops; $not constant"$.so relationship cannot be linear;[2]orstraight-line joining extreme points; does not pass through "error boxes" of all points;(d)product RT calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; Award [2 max] if °C used instead of K.A2. (a)measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope);		(c)	grad	ient of graph decreases as temperature rises / increases as $\int accept$ "gradient"	
 so relationship cannot be linear; [2] or straight-line joining extreme points; does not pass through "error boxes" of all points; (d) product <i>RT</i> calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; [3] Avard [2 max] if °C used instead of K. 			temp	perature drops; <i>not constant</i> ".	
 or straight-line joining extreme points; does not pass through "error boxes" of all points; (d) product <i>RT</i> calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; <i>Award [2 max] if °C used instead of K.</i> A2. (a) measure activity <i>A</i> of a sample containing the isotope; determine (chemically) the number <i>N</i> of atoms <u>of the isotope</u> (from the measured mass of the isotope); the targe ln 2 			so re	elationship cannot be linear;	[2]
 straight-line joining extreme points; does not pass through "error boxes" of all points; (d) product <i>RT</i> calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; <i>[3]</i> <i>Award</i> [2 max] if °C used instead of K. A2. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); 			or		
 (d) product <i>RT</i> calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; <i>Award [2 max] if °C used instead of K.</i> A2. (a) measure activity <i>A</i> of a sample containing the isotope; determine (chemically) the number <i>N</i> of atoms <u>of the isotope</u> (from the measured mass of the isotope); the tage d m² ln 2 			strai does	ght-line joining extreme points; not pass through "error boxes" of all points:	
 (d) product <i>RI</i> calculated correctly for two points; product calculated correctly for third point; conclusion: not same value so suggestion not correct; [3] <i>Award</i> [2 max] if °C used instead of K. A2. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); he take take take take take take take tak		(1)			
 (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); 		(d)	prod	luct <i>RT</i> calculated correctly for two points; luct calculated correctly for third point:	
 Award [2 max] if °C used instead of K. A2. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); 			conc	clusion: not same value so suggestion not correct;	[3]
A2. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); $\ln 2$			Awa	ard [2 max] if °C used instead of K.	
A2. (a) measure activity A of a sample containing the isotope; determine (chemically) the number N of atoms of the isotope (from the measured mass of the isotope); $\ln 2$					
mass of the isotope); $\ln 2$	A2.	(a)	mea dete	sure activity A of a sample containing the isotope; rmine (chemically) the number N of atoms <u>of the isotope</u> (from the measured a of the isotope).	
			mas	$\ln 2$	[0]

- $A = \lambda N \text{ and } T_{\frac{1}{2}} = \frac{\Pi 2}{\lambda};$ [3]
- (b) fraction = $\left(\frac{1}{2}\right)^{1.6}$ or fraction = $e^{-1.6 \times \ln 2}$; fraction=0.33;

B3. Part 2 Nuclear decay

(a)	emis not a const activ daug	[3 max]	
(b)	(i)	fission;	[1]
	(ii)	N.B. <i>positions may be marked on line or on x-axis.</i> U shown near right-hand end of line; Sr and Xe shown between U and the peak with Sr to the left of Xe;	[2]
	(iii)	total binding energy of uranium = $1189 + 784.8 - 187.9$; = 1785.9 MeV;	
		binding energy per nucleon = $\left(\frac{1785.9}{235}\right)$ = 7.60MeV ;	[3]
		Allow unit as MeV or MeV per nucleon. Accept answer in Joules e.g. 1.22×10^{-12} J.	

(iv) binding energy is zero because neutrons are separate particles; [1]